PHYSICAL REVIEW E 67, 011106 (2003
Combined effect of periodic gates and external fields on the diffusion coefficient of a single particle
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A general analytical expression to describe the diffusion of a single particle in a one-dimensional lattice with
periodically distributed gates of lifetimer) and while under the influence of a constant external field is
calculated. A formulation based on a microscopic model and a diffusion relaxation condition is used to derive
an equation for the diffusion coefficient as a function of the concentration of gatethé lifetime (r) of such
gates, and the strength of the external figd)l.(The theory is compared against Monte Carlo simulations, and
limiting cases are used to reproduce previously published results on a variety of phenomena.
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[. INTRODUCTION ence is that the edges of the stepped surface not only involve
different potential barriers, but also different potential wells
The subject of diffusion within different types of media [12,15. These systems were studied in terms of temperature
has been the focus of increasing interest over the past fe@nd its effect on the particle’s diffusion.
decadeq1,2]. Diffusion plays an essential role in a wide  The purpose of this paper is to study the diffusion coeffi-
variety of physical and chemical phenomena involvingcient of a single particle moving along a simple geometrical
chemical kinetic§3], conductivity [4], glasseq5], cellular representation of cellular media while under the influence of
media[6,7], etc. A considerable amount of work has been@ constant external field. We use a statistical microscopic
devoted to the study of diffusion in disordered media. Inmodel of a biased random walk to study this phenomenon.
particular, it has been observed that transport properties ale obtain a general equation which describes our system as
highly sensitive to structural changes. However, a complet&ell as other systems previously reported in the literature. In
description of all possible interactions between diffusion andParticular, we draw connections between our model and
such disorder remains an active area of research, where néfjose previously used to represent diffusion on a stepped
phenomena are discovered regularly. In order to study diffusurface[15], cellular medig[6,7], and simple biased diffu-
sion in disordered media, fractal structures have often beefion. We also relate our results to a system that was proposed
used to represent geometrical disord8r9]. An energetic to mimic properties of glass transitigs]. The geometrical
disorder has also been introduced, but mainly in the form otharacteristics of the latter inspired the lattice model used
the dichotomid 10] and the Ehrlich-Shwoebgl1,12 barrier ~ herein. Our system is nonthermal, and the interaction be-
models. Anomalous diffusion has been observed in all théween particle and gates is strictly steric.
aforementioned cases. The presence of a bias, which also This paper is organized as follows. Section Il describes
affects a particle’s motion, provides an additional variable tothe model used as well as the mathematical details of our
an already complex phenomenon in both geometrid@ly ~ calculation. Section Ill compares our analytical results to our
and energetically13,14] disordered lattices. system’s Monte Carlo simulations. Section 1V illustrates how
Cellular media have been identified with multiple materi- limiting cases of our calculations reproduce known results
als ranging from biological tissues to soap suds. These medf@r other systems.
consist of consecutive finite cells separated by permeable
walls. Each ce_II consists of energy p_otential Wel_ls separated Il. MODEL AND CALCULATIONS
by energy barriers, all of equal magnitude. The linear size of
a cell is determined by the number of these potential wells, We consider the diffusion of a single particle along a one-
all of which are available for a particle to visit. According to dimensional discrete lattice. The lattice consists of an infinite
the dichotomic barrier model, larger energy barriers surroungeries of consecutive cells where each cell contains the same
each cell and act as wallls of reduced permeability. In order teaumber of lattice sites. Gates are placed between two lattice
study diffusion in this periodic array of small and large bar-sites to separate two consecutive cells from each other. The
riers, the jump probability to overcome the larger barriers ismain feature of this model is that these gates have a dimen-
different from that of the smaller barriers. In an alternativesionless lifetimer, after which they all disappear simulta-
description of this medium, the barriers are replaced by trapseously during one-particle’s jump. All then reappear in the
characterized by specific mean stay tini@gs Step motion same place during the nextjump attempts. In other words,
on crystal surfaces can also be studied in terms of a periodisince the gates are removed everynits of time only to
distribution of potential wells and barriers. The main differ- return one unit of time later thenrepresents the lifetime of
a cell. As can be deduced, is directly related to what in
cellular media is known as the permeability of the wall. The
* Author to whom correspondence should be addressed; electronjearticle diffuses along this system under the influence of a
address: leoh@cali.csudh.edu constant external field. Figure 1 describes the system.

1063-651X/2003/6(1)/0111065)/$20.00 67 011106-1 ©2003 The American Physical Society



OUM, PARRONDO, AND MARTINEZ PHYSICAL REVIEW E67, 011106 (2003

2
tl ceIIF

[(R+L+2RL-R?>-L?)].
3

We now compare E.3) to the known equation for the dis-
persion, (x2(t))—(x(t))>=2Dt, to obtain the following
equation for the diffusion coefficient:

(X2(1)) = (x(1))?=

T

n+1)%D
D=Q(R+L+2RL—R2—L2), (4)

whereD,=T'2/2 corresponds to the normal diffusion con-

. . . . stant. This is the most general expression for the diffusion
FIG. 1. (Color online only This schematic representation of the ~qgefficient in this system.

model shows a cell consisting of+1 sites, enumerated from zero Since our concern is to find an explicit relationship be-

ton. The cell is su_rroundeo_l b_y two other Ce”.s. .Of the same _?'jze' tween the diffusion coefficierd and the system’s variables
and 1-p are the microscopic jumping probabilities for a.pellrtlcle to b, ¢, and 7, we must calculate the escaping probabilites
move to its nearest neighborR and L are the probabilities of . . -
escaping the cell, and_L in te_rms of th_ose _vanaples. The pro_babMty for the
particle to jump fromi—(i+1) is (1—p), while the prob-
ability of jumping from (+1)—i is p in a cell containing
(n+ 1) sites(the sites in the cell are numbered from Ontg
s shown in Fig. 1. According to the principle of detailed
alance[16], the following hierarchy of equations must be
Fatisfied by the stationary distribution:

Our model is similar to one proposed by Ivanetval. to
mimic certain properties of glass transitigs]. In their
model, the gates were not all synchronized to appear an
disappear at the same time.

Our procedure first assumes diffusion relaxation in a cel

in order to calculate a site’s occupation probability. It enables Po(1—p)=P;p,
us to calculate the probability of the particle escaping a cell

both to the right(R) and to the left [). These probabilities P1(1-p)=P5,p, (5
are then used to calculate the first and second moments of the .

distribution and the corresponding dispersion for the parti-

cle’s motion from cell to cell. The expression obtained forwhose general solution is

such dispersion is then compared to the well-known result .

(x2(t))—(x(t))>=2Dt. This comparison allows us to derive Pi=a'P, (6)
an analytical equation for the diffusion coefficient in terms of
the size of the cell, the lifetime periodicity of the celt)(
and the strength of the fielgvhich in our analysis is given in
terms of the probability of motiop). The physical assump-

with a=(1—p)/p. Imposing the normalization condition for
the probability distribution within the celX{_,P;=1, we
find

tion of diffusion relaxation implies an intrinsic mathematical

. . e . : . l-«a
relationship between the lifetime of a cell and its size. This pn:(—) an, 7
fact becomes evident in the mathematical description given 1—a"*t?t

below. . .
In order to calculate the diffusion coefficient for this pro- WNere we have assumed<1 (i.e.,, 1/2<p=1), which rep-

cess, we must find an expression for the dispersion of a pangents the intrinsic presence of a field. The specific case of

ticle jumping between cells. This implies the need to calcu-*=1 Or P=1/2 will be discussed in Sec. IV C.

late the first and second moments of that distribution. Usin%
I' as the jumping frequency (1 wheret’ is the time for u
each hopping attemptand | .= (n+1)l, as the size of a
cell [we definel, as the distance between two lattice sites
and (n+ 1) as the number of sites per dethe equations for
those moments are

The distribution given by Eq(7) is the stationary distri-
tion within the cell. As mentioned before, we will assume
that the gates are closed for a period of time long enough to
reach this stationary distribution. With this assumption, the
probability of a particle escaping a given cell so that it can
move to either the cell's righfR=P,(1—p)] or left (L
=P,p) can now be calculated

tlceIIF 1—
(x(1) =~ (R-L), M R=< al)an(l_p)
1_an+ !
tlgellr 1-«a
(D) =~ (R+L). @ L= 222 ), ®)
1_an+l

The dispersion for our system can now be calculated us- Using these equations f& andL in our general expres-
ing Egs.(1) and(2) sion for the diffusion coefficientEqg. (4)], we obtain
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i lytical prediction and the Monte Carlo simulation for the
. case when the concentration of gategis0.2.

It is important to notice the shape of the surface describ-
ing the diffusion coefficient in terms of the hopping probabil-
ity p and the lifetime of the cells. We notice that for any
given value ofc andp, the diffusion coefficient decreases as
the lifetime of the cell increases. This can readily be derived
from Eq. (10) by taking the partial derivative db(c, 7,p)
with respect tor, and by realizing that the resulting expres-
sion will be always negative and proportionaltor— 2. This
also implies that the value of the diffusion coefficient
changes more dramatically in the presence of short-lived
cells and stabilizes as the cells become long lived. A gener-
ally similar situation can be predicted from E4.0) for the

FIG. 2. (Color) Comparison between analytical results using Eq.dependence oD(c,7,p) with respect toc. The diffusion
(10) (continuous meshand Monte Carlo simulationgdots. We  coefficient decreases as the concentration of gates increases
have plottedD(c, 7,p) vs 7 vs p (field’s strength, including the  (or the size of the cell decreages
casep=1/2, which is discussed in Sec. IV C. The concentration of  Additionally, we observe the presence of a maximum on
ga_tes isc:0.22. The quantities, 7, andp are dimensionles® has  he D(c,7,p) vs p plane. This is more clearly seen in Fig. 3,
units of Do(I51). which shows the diffusion coefficient in terms of the hopping

probability. Noticeably, for certainr and c, increasing the
1+ 1_1 " (2p—1)(1-p) strength of the field enhances the particle’s diffusion up to a
p P P)p given field strength. The effect of increasing the strength of
1 n . the field is contrary after that point to the extent that no
(——1) (p—1)+p diffusion is observed at very strong fields<€ 1); the walk
p becomes completely deterministic.
(9) Also, we notice that for a given value af the accuracy
of the match between theory and simulations is affected as
ate concentration decreases. This occurs because our as-
umption of diffusional relaxation within a cell is not met
under these circumstances. The particle does not have
enough time to visit all sites of a given cell before the gates

2(n+1)2D,

T

D(n,7,p)=

Furthermore, since the cells are all of equivalent size (
+1), the dimensionless concentration of gates is given bg
c=1/(n+1). Substituting in Eq(9), we obtain

1-c)lc
1+ 1_1)( ) }(Zp—l)(l—p)p open. It is apparent from this observation thaandc are
D(c,7,p)= =2 intimately related to guarantee diffusional relaxation v_V|th|n a
' c2r 1 (1=c)e ' cell. We have observed that a strong agreement is found
(5_1) (p—D)+p whenever the productc=4. As that product becomes

(100  smaller, the theoretical calculation deviates mainly for the
small fields, as the particle performs a less deterministic
Equation(10) is the general expression that describes thavalk.
diffusion coefficient for our systeni)), but is now given in
terms of: the concentration of gates)( the period of time
during which the gates remain closed)( and the field IV. SOME LIMITING CASES

strength(as measured by). A. Biased diffusion with waiting time

Diffusion with waiting time can be represented by a par-
ticle jumping to its neighboring sites and remaining station-

To ascertain the validity of our analysis, we compare ourary for some time before attempting another jump. The mo-
analytical results from Eq10) against Monte Carlo simula- tion of this “sticky” particle can be achieved in our model by
tions of the one-dimensional system discussed herein. Thidling the lattice with gates. Since gates are placed between
Monte Carlo simulations consist of a single particle that islattice sites in our system, when=1, there is always a gate
allowed to jump to either of its nearest neighbor sites, probetween two lattice sites. The particle is then forced to re-
vided not a standing gate obstructs the path. If a standinghain at that site for units of time until the gates open. At
gate is present, the particle remains at the site for that unit ahat time, the particle jumps to one of its nearest lattice sites.
time. Each trajectory consists o83L0* units of time and is  The equation that describes this process is derived from Eq.
characterized by a given value of r, andp. A total of 10 (10) when gate concentration is set@t 1. Our equation
trajectories for each selection of 7, andp are explored. becomes
Periodic boundary conditions are used to simulate an infinite
lattice. D(7,p)= 4D

Figure 2 shows an excellent agreement between our ana- ' T

I1l. ANALYTICAL RESULTS AND SIMULATIONS

>(1-p)p. (11)
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FIG. 3. (Color online only Analytical results and Monte Carlo L A D.?p{ﬁeld] A -2 1

simulations forD(c, 7,p) vs p, for 7=40 at different gate concen-
trations and using the same units as in Fig. 2. The line correspond-

h _ ) ‘ FIG. 4. (Color online only Analytical results vs simulation for a
ing toc=0.2 is a slice of Fig. 2.

biased random walk. The calculation becomes exact in this limit as

) ) o seen in the perfect fit between the analytical prediction and the

relaxation condition is always met as it only takes one unit of

time to visit that one site in the cell. This is confirmed by  Equation(14) agrees with several results previously re-
Fig. 4, where we have plotted(7,p) vs p. Notice the exact ported in the literature; those studies used different methods
agreement between the analytical red@t. (11)] and the  for unbiased diffusion in similar types of media. Here we

Monte Carlo simulations. relate Eq.(14) to some of those results.
Milchev et al. studied the problem of a particle diffusing
B. Simple biased diffusion in a dichotomic barrier moddl6]. Their study focused on

Biased diffusion in a lattice free of obstacles can also bedlfferent diffusion regimes arising from the model. Their for-

. . . , mulation allowed them to find a proportionality relation for
represented in our model by saturating the lattice with gateﬁ1e diffusion coefficient ast(+o): D,~pL, for pL<1. L
(c=1), provided thatr=1. In other words, the gates are - D=~ P P X

forced to open every time the particle attempts to jump: esv. o> defined as the size of the cell gnas the jump rate to
P y P P jump; ercome the higher barriefso that we can identifyp as

sentially there is an absence of barriers. This scenario, Whicél\éin roportional tor—%). As can be seen, Eq14) cor-
is not considered a cellular medium, cannot be represente g prop i ’

. : _ rectly describes the long-time behavior predicted in that
directly by our modeli.e., forc=0). aner
Adding the conditionr=1 to Eq.(11), a known equation paper.

: ) . e . Natori and Godby studied surface diffusion on a stepped
[17] that describes simple biased diffusion can be derived, surface[15]. An analysis similar to tight-binding theory of

D(p)=4D,(1-p)p. (12)  electronic structure yielded expressions for the diffusion co-
efficient in both thex andy directions. Thex direction in that
Results from Eq(12) and its corresponding simulation model resembled a ladder where the particle is free to move.
results are shown in Fig. 4 under the label 1. Different jumping rates were defined depending on whether
the particle was moving on a step of the ladder or trying to
move up or down to the next step. When we modify those
rates to coincide with our modéi.e., rates within the step
The typical model of cellular media involves the unbiasedequal to each other, and the rate to go up a step equals to the
motion of a particle in a cellular lattic,7]. We can calcu-  rate for going dowd’=T";), we can compare their results to
late the diffusion coefficient by taking the limii—1/2 in  Eq.(14). We do so by realizing that the Schwoebel and Ship-
Eq. (10) or, more simply, by recalculating the escaping prob-sey factor(S) [12] is proportional tor %, and by identifying

C. Unbiased diffusion on a simple model of cellular media

abilities R andL, which now read c=1/n (using their labeling notationFor the case in which
S—0(r—x), their diffusion coefficient result become&s
W=L=R= ; (13) =D,Sn, which is the same as our E{.4). _ _
2(n+1) Ivanov et al. proposed several one-particle, purely diffu-
sional models to mimic specific properties of glass transition
and use them in Ed4). The final result is [5]. The model we study in this papéFig. 1) is based on

5 their modelA. Their model consisted of a lattice with equally
D= 2W(n+1)"D, _ Do (14) distributed barriers which would open afterunits of time.
T cT’ However, the barriers did not open in a synchronized man-
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ner. Instead, the starting point of a sequence was chosen #lie system has no gates. Interestingly, we do so by realizing
random foreachparticle. Also, their study was specific for that our model is equivalent to such cases wherl. Our
simple diffusion and did not include the influence of a bias.formulation successfully describes a biased walk with wait-
They pointed out in their paper that slight changes in thang times Eq(11) and a simple biased random walk E#2).
lattice model could lead to drastic changes in the diffusionFinally, we can describe the process of a single particle mov-
As expected, the expression for the diffusion coefficient theying in our model without the influence of an external bias
obtained for modeR differs from our result. However, it is using Eq.(14). All these findings agree with previously pub-

important to notice that in the limit when the produst lished results covering numerous phenomena.
becomes large, both their expression and our #¢) de- Our model also shows and explains new features which
crease as#c) 1. have not yet been observed. In particular, we observe that,
for a given concentration of gates, either a strong field or a
V. CONCLUSIONS weak field may have the same effect on the diffusion of the

. . ) particle. An optimal combination of field and gate concentra-

We have derived a general equation, &4, which de-  tion provides maximum diffusion. This was observed in the
scr_ibes th_e diffusion coeﬁicieqt of a single moving par';icleD(C,T,p) vs p plane(Fig. 3). We are not aware of this de-
while confined to a medium with equal size cells of lifetime pendency being discussed in the literature. Instead, in previ-
7 and under the influence of an external field. The only aspys studies of a biased random walk in energetically disor-
sumption in this derivation is the lifetimeof the cells to be  gered lattices, Monte Carlo techniques have been used to
long enough to allow diffusional relaxation within them. For stydy the mean-square displacement and its dependency on
zero fields, this means must be much longer than the the temperature of the system, as well as the effect of an
square of the size of the celh (- 1)*=1/c? i.e,, 7c®<1. On  ajternating field 14]. Also, the currents produced by a strong
the other hand, if the field is present, the relaxation of timepjas have been studied using detailed baldié
grows linearly with 6+ 1). By extensive simulations of the
system, we conclude that our assumption is fulfilled when- ACKNOWLEDGMENTS
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