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Combined effect of periodic gates and external fields on the diffusion coefficient of a single particl
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A general analytical expression to describe the diffusion of a single particle in a one-dimensional lattice with
periodically distributed gates of lifetime (t) and while under the influence of a constant external field is
calculated. A formulation based on a microscopic model and a diffusion relaxation condition is used to derive
an equation for the diffusion coefficient as a function of the concentration of gates (c), the lifetime (t) of such
gates, and the strength of the external field (p). The theory is compared against Monte Carlo simulations, and
limiting cases are used to reproduce previously published results on a variety of phenomena.
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I. INTRODUCTION

The subject of diffusion within different types of med
has been the focus of increasing interest over the past
decades@1,2#. Diffusion plays an essential role in a wid
variety of physical and chemical phenomena involvi
chemical kinetics@3#, conductivity @4#, glasses@5#, cellular
media @6,7#, etc. A considerable amount of work has be
devoted to the study of diffusion in disordered media.
particular, it has been observed that transport properties
highly sensitive to structural changes. However, a comp
description of all possible interactions between diffusion a
such disorder remains an active area of research, where
phenomena are discovered regularly. In order to study di
sion in disordered media, fractal structures have often b
used to represent geometrical disorder@8,9#. An energetic
disorder has also been introduced, but mainly in the form
the dichotomic@10# and the Ehrlich-Shwoebel@11,12# barrier
models. Anomalous diffusion has been observed in all
aforementioned cases. The presence of a bias, which
affects a particle’s motion, provides an additional variable
an already complex phenomenon in both geometrically@9#
and energetically@13,14# disordered lattices.

Cellular media have been identified with multiple mate
als ranging from biological tissues to soap suds. These m
consist of consecutive finite cells separated by perme
walls. Each cell consists of energy potential wells separa
by energy barriers, all of equal magnitude. The linear size
a cell is determined by the number of these potential we
all of which are available for a particle to visit. According
the dichotomic barrier model, larger energy barriers surro
each cell and act as walls of reduced permeability. In orde
study diffusion in this periodic array of small and large ba
riers, the jump probability to overcome the larger barriers
different from that of the smaller barriers. In an alternati
description of this medium, the barriers are replaced by tr
characterized by specific mean stay times@7#. Step motion
on crystal surfaces can also be studied in terms of a peri
distribution of potential wells and barriers. The main diffe
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ence is that the edges of the stepped surface not only inv
different potential barriers, but also different potential we
@12,15#. These systems were studied in terms of tempera
and its effect on the particle’s diffusion.

The purpose of this paper is to study the diffusion coe
cient of a single particle moving along a simple geometri
representation of cellular media while under the influence
a constant external field. We use a statistical microsco
model of a biased random walk to study this phenomen
We obtain a general equation which describes our system
well as other systems previously reported in the literature
particular, we draw connections between our model a
those previously used to represent diffusion on a step
surface@15#, cellular media@6,7#, and simple biased diffu-
sion. We also relate our results to a system that was propo
to mimic properties of glass transition@5#. The geometrical
characteristics of the latter inspired the lattice model u
herein. Our system is nonthermal, and the interaction
tween particle and gates is strictly steric.

This paper is organized as follows. Section II describ
the model used as well as the mathematical details of
calculation. Section III compares our analytical results to o
system’s Monte Carlo simulations. Section IV illustrates ho
limiting cases of our calculations reproduce known resu
for other systems.

II. MODEL AND CALCULATIONS

We consider the diffusion of a single particle along a on
dimensional discrete lattice. The lattice consists of an infin
series of consecutive cells where each cell contains the s
number of lattice sites. Gates are placed between two la
sites to separate two consecutive cells from each other.
main feature of this model is that these gates have a dim
sionless lifetimet, after which they all disappear simulta
neously during one-particle’s jump. All then reappear in t
same place during the nextt jump attempts. In other words
since the gates are removed everyt units of time only to
return one unit of time later thent represents the lifetime o
a cell. As can be deduced,t is directly related to what in
cellular media is known as the permeability of the wall. T
particle diffuses along this system under the influence o
constant external field. Figure 1 describes the system.
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Our model is similar to one proposed by Ivanovet al. to
mimic certain properties of glass transition@5#. In their
model, the gates were not all synchronized to appear
disappear at the same time.

Our procedure first assumes diffusion relaxation in a c
in order to calculate a site’s occupation probability. It enab
us to calculate the probability of the particle escaping a
both to the right~R! and to the left (L). These probabilities
are then used to calculate the first and second moments o
distribution and the corresponding dispersion for the pa
cle’s motion from cell to cell. The expression obtained f
such dispersion is then compared to the well-known re
^x2(t)&2^x(t)&252Dt. This comparison allows us to deriv
an analytical equation for the diffusion coefficient in terms
the size of the cell, the lifetime periodicity of the cell (t),
and the strength of the field~which in our analysis is given in
terms of the probability of motionp). The physical assump
tion of diffusion relaxation implies an intrinsic mathematic
relationship between the lifetime of a cell and its size. T
fact becomes evident in the mathematical description gi
below.

In order to calculate the diffusion coefficient for this pr
cess, we must find an expression for the dispersion of a
ticle jumping between cells. This implies the need to cal
late the first and second moments of that distribution. Us
G as the jumping frequency (1/t8, wheret8 is the time for
each hopping attempt! and l cell5(n11)l o as the size of a
cell @we definel o as the distance between two lattice sit
and (n11) as the number of sites per cell#, the equations for
those moments are

^x~ t !&5
t l cellG

t
~R2L !, ~1!

^x2~ t !&5
t l cell

2 G

t
~R1L !. ~2!

The dispersion for our system can now be calculated
ing Eqs.~1! and ~2!

FIG. 1. ~Color online only! This schematic representation of th
model shows a cell consisting ofn11 sites, enumerated from zer
to n. The cell is surrounded by two other cells of the same sizep
and 12p are the microscopic jumping probabilities for a particle
move to its nearest neighbors.R and L are the probabilities of
escaping the cell.
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^x2~ t !&2^x~ t !&25
t l cell

2 G

t
@~R1L12RL2R22L2!#.

~3!

We now compare Eq.~3! to the known equation for the dis
persion, ^x2(t)&2^x(t)&252Dt, to obtain the following
equation for the diffusion coefficient:

D5
~n11!2Do

t
~R1L12RL2R22L2!, ~4!

whereDo5G l o
2/2 corresponds to the normal diffusion co

stant. This is the most general expression for the diffus
coefficient in this system.

Since our concern is to find an explicit relationship b
tween the diffusion coefficientD and the system’s variable
p, c, and t, we must calculate the escaping probabilitiesR
and L in terms of those variables. The probability for th
particle to jump fromi→( i 11) is (12p), while the prob-
ability of jumping from (i 11)→ i is p in a cell containing
(n11) sites~the sites in the cell are numbered from 0 ton),
as shown in Fig. 1. According to the principle of detaile
balance@16#, the following hierarchy of equations must b
satisfied by the stationary distribution:

Po~12p!5P1p,

P1~12p!5P2p, ~5!

]

whose general solution is

Pi5a i Po ~6!

with a5(12p)/p. Imposing the normalization condition fo
the probability distribution within the cell,( i 50

n Pi51, we
find

Pn5S 12a

12an11D an, ~7!

where we have assumeda,1 ~i.e., 1/2,p<1), which rep-
resents the intrinsic presence of a field. The specific cas
a51 or p51/2 will be discussed in Sec. IV C.

The distribution given by Eq.~7! is the stationary distri-
bution within the cell. As mentioned before, we will assum
that the gates are closed for a period of time long enoug
reach this stationary distribution. With this assumption,
probability of a particle escaping a given cell so that it c
move to either the cell’s right@R5Pn(12p)# or left (L
5Pop) can now be calculated

R5S 12a

12an11D an~12p!,

L5S 12a

12an11D p. ~8!

Using these equations forR andL in our general expres
sion for the diffusion coefficient@Eq. ~4!#, we obtain
6-2
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D~n,t,p!5
2~n11!2Do

t

F11S 1

p
21D nG~2p21!~12p!p

S 1

p
21D n

~p21!1p

.

~9!

Furthermore, since the cells are all of equivalent sizen
11), the dimensionless concentration of gates is given
c51/(n11). Substituting in Eq.~9!, we obtain

D~c,t,p!5
2Do

c2t

F11S 1

p
21D (12c)/cG~2p21!~12p!p

S 1

p
21D (12c)/c

~p21!1p

.

~10!

Equation~10! is the general expression that describes
diffusion coefficient for our system (D), but is now given in
terms of: the concentration of gates (c), the period of time
during which the gates remain closed (t), and the field
strength~as measured byp).

III. ANALYTICAL RESULTS AND SIMULATIONS

To ascertain the validity of our analysis, we compare o
analytical results from Eq.~10! against Monte Carlo simula
tions of the one-dimensional system discussed herein.
Monte Carlo simulations consist of a single particle that
allowed to jump to either of its nearest neighbor sites, p
vided not a standing gate obstructs the path. If a stand
gate is present, the particle remains at the site for that un
time. Each trajectory consists of 33104 units of time and is
characterized by a given value ofc, t, andp. A total of 105

trajectories for each selection ofc, t, and p are explored.
Periodic boundary conditions are used to simulate an infi
lattice.

Figure 2 shows an excellent agreement between our

FIG. 2. ~Color! Comparison between analytical results using E
~10! ~continuous mesh! and Monte Carlo simulations~dots!. We
have plottedD(c,t,p) vs t vs p ~field’s strength!, including the
casep51/2, which is discussed in Sec. IV C. The concentration
gates isc50.2. The quantitiesc, t, andp are dimensionless.D has
units of Do( l o

2G).
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lytical prediction and the Monte Carlo simulation for th
case when the concentration of gates isc50.2.

It is important to notice the shape of the surface desc
ing the diffusion coefficient in terms of the hopping probab
ity p and the lifetime of the cellst. We notice that for any
given value ofc andp, the diffusion coefficient decreases a
the lifetime of the cell increases. This can readily be deriv
from Eq. ~10! by taking the partial derivative ofD(c,t,p)
with respect tot, and by realizing that the resulting expre
sion will be always negative and proportional to2t22. This
also implies that the value of the diffusion coefficie
changes more dramatically in the presence of short-li
cells and stabilizes as the cells become long lived. A gen
ally similar situation can be predicted from Eq.~10! for the
dependence ofD(c,t,p) with respect toc. The diffusion
coefficient decreases as the concentration of gates incre
~or the size of the cell decreases!.

Additionally, we observe the presence of a maximum
theD(c,t,p) vs p plane. This is more clearly seen in Fig.
which shows the diffusion coefficient in terms of the hoppi
probability. Noticeably, for certaint and c, increasing the
strength of the field enhances the particle’s diffusion up t
given field strength. The effect of increasing the strength
the field is contrary after that point to the extent that
diffusion is observed at very strong fields (p51); the walk
becomes completely deterministic.

Also, we notice that for a given value oft, the accuracy
of the match between theory and simulations is affected
gate concentration decreases. This occurs because ou
sumption of diffusional relaxation within a cell is not me
under these circumstances. The particle does not h
enough time to visit all sites of a given cell before the ga
open. It is apparent from this observation thatt and c are
intimately related to guarantee diffusional relaxation within
cell. We have observed that a strong agreement is fo
whenever the producttc*4. As that product become
smaller, the theoretical calculation deviates mainly for t
small fields, as the particle performs a less determini
walk.

IV. SOME LIMITING CASES

A. Biased diffusion with waiting time

Diffusion with waiting time can be represented by a pa
ticle jumping to its neighboring sites and remaining statio
ary for some time before attempting another jump. The m
tion of this ‘‘sticky’’ particle can be achieved in our model b
filling the lattice with gates. Since gates are placed betw
lattice sites in our system, whenc51, there is always a gate
between two lattice sites. The particle is then forced to
main at that site fort units of time until the gates open. A
that time, the particle jumps to one of its nearest lattice si
The equation that describes this process is derived from
~10! when gate concentration is set atc51. Our equation
becomes

D~t,p!5
4Do

t
~12p!p. ~11!

.

f
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The calculation becomes exact in this limit because
relaxation condition is always met as it only takes one uni
time to visit that one site in the cell. This is confirmed b
Fig. 4, where we have plottedD(t,p) vs p. Notice the exact
agreement between the analytical result@Eq. ~11!# and the
Monte Carlo simulations.

B. Simple biased diffusion

Biased diffusion in a lattice free of obstacles can also
represented in our model by saturating the lattice with ga
(c51), provided thatt51. In other words, the gates ar
forced to open every time the particle attempts to jump;
sentially there is an absence of barriers. This scenario, w
is not considered a cellular medium, cannot be represe
directly by our model~i.e., for c50).

Adding the conditiont51 to Eq.~11!, a known equation
@17# that describes simple biased diffusion can be derive

D~p!54Do~12p!p. ~12!

Results from Eq.~12! and its corresponding simulatio
results are shown in Fig. 4 under the labelt51.

C. Unbiased diffusion on a simple model of cellular media

The typical model of cellular media involves the unbias
motion of a particle in a cellular lattice@6,7#. We can calcu-
late the diffusion coefficient by taking the limitp→1/2 in
Eq. ~10! or, more simply, by recalculating the escaping pro
abilities R andL, which now read

W5L5R5
1

2~n11!
~13!

and use them in Eq.~4!. The final result is

D5
2W~n11!2Do

t
5

Do

ct
. ~14!

FIG. 3. ~Color online only! Analytical results and Monte Carlo
simulations forD(c,t,p) vs p, for t540 at different gate concen
trations and using the same units as in Fig. 2. The line corresp
ing to c50.2 is a slice of Fig. 2.
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Equation~14! agrees with several results previously r
ported in the literature; those studies used different meth
for unbiased diffusion in similar types of media. Here w
relate Eq.~14! to some of those results.

Milchev et al. studied the problem of a particle diffusin
in a dichotomic barrier model@6#. Their study focused on
different diffusion regimes arising from the model. Their fo
mulation allowed them to find a proportionality relation fo
the diffusion coefficient as (t→`): D`'pL, for pL!1. L
was defined as the size of the cell andp as the jump rate to
overcome the higher barriers~so that we can identifyp as
being proportional tot21). As can be seen, Eq.~14! cor-
rectly describes the long-time behavior predicted in t
paper.

Natori and Godby studied surface diffusion on a stepp
surface@15#. An analysis similar to tight-binding theory o
electronic structure yielded expressions for the diffusion
efficient in both thex andy directions. Thex direction in that
model resembled a ladder where the particle is free to mo
Different jumping rates were defined depending on whet
the particle was moving on a step of the ladder or trying
move up or down to the next step. When we modify tho
rates to coincide with our model~i.e., rates within the step
equal to each other, and the rate to go up a step equals t
rate for going downG5G1), we can compare their results t
Eq. ~14!. We do so by realizing that the Schwoebel and Sh
sey factor~S! @12# is proportional tot21, and by identifying
c51/n ~using their labeling notation!. For the case in which
S→0(t→`), their diffusion coefficient result becomesD
5DoSn, which is the same as our Eq.~14!.

Ivanov et al. proposed several one-particle, purely diff
sional models to mimic specific properties of glass transit
@5#. The model we study in this paper~Fig. 1! is based on
their modelA. Their model consisted of a lattice with equal
distributed barriers which would open aftert units of time.
However, the barriers did not open in a synchronized m

d- FIG. 4. ~Color online only! Analytical results vs simulation for a
biased random walk. The calculation becomes exact in this limi
seen in the perfect fit between the analytical prediction and
Monte Carlo results. Units are the same as in Fig. 2.
6-4
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ner. Instead, the starting point of a sequence was chose
random foreachparticle. Also, their study was specific fo
simple diffusion and did not include the influence of a bia
They pointed out in their paper that slight changes in
lattice model could lead to drastic changes in the diffusi
As expected, the expression for the diffusion coefficient th
obtained for modelA differs from our result. However, it is
important to notice that in the limit when the producttc
becomes large, both their expression and our Eq.~14! de-
crease as (tc)21.

V. CONCLUSIONS

We have derived a general equation, Eq.~4!, which de-
scribes the diffusion coefficient of a single moving partic
while confined to a medium with equal size cells of lifetim
t and under the influence of an external field. The only
sumption in this derivation is the lifetimet of the cells to be
long enough to allow diffusional relaxation within them. F
zero fields, this meanst must be much longer than th
square of the size of the cell (n11)251/c2, i.e.,tc2!1. On
the other hand, if the field is present, the relaxation of ti
grows linearly with (n11). By extensive simulations of th
system, we conclude that our assumption is fulfilled wh
evertc*4 for small fields.

Equation ~4! encompasses features of this system t
have so far been discussed separately in the literature su
cellular media, surface diffusion on stepped surfaces, g
transition, ion channel permeation, etc. We have captured
most important features affecting the diffusion coefficient
these types of media using a very simple lattice model an
general nonthermal mathematical formulation. We are a
able to use our formulation to describe situations in wh
.
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ys
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the system has no gates. Interestingly, we do so by reali
that our model is equivalent to such cases whenc51. Our
formulation successfully describes a biased walk with wa
ing times Eq.~11! and a simple biased random walk Eq.~12!.
Finally, we can describe the process of a single particle m
ing in our model without the influence of an external bi
using Eq.~14!. All these findings agree with previously pub
lished results covering numerous phenomena.

Our model also shows and explains new features wh
have not yet been observed. In particular, we observe t
for a given concentration of gates, either a strong field o
weak field may have the same effect on the diffusion of
particle. An optimal combination of field and gate concent
tion provides maximum diffusion. This was observed in t
D(c,t,p) vs p plane~Fig. 3!. We are not aware of this de
pendency being discussed in the literature. Instead, in pr
ous studies of a biased random walk in energetically dis
dered lattices, Monte Carlo techniques have been use
study the mean-square displacement and its dependenc
the temperature of the system, as well as the effect of
alternating field@14#. Also, the currents produced by a stron
bias have been studied using detailed balance@18#.
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